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A B S T R A C T   

Globally, informed decision on the most effective set of restrictions for the containment of COVID-19 has been 
the subject of intense debates. There is a significant need for a structured dynamic framework to model and 
evaluate different intervention scenarios and how they perform under different national characteristics and 
constraints. This work proposes a novel optimal decision support framework capable of incorporating different 
interventions to minimize the impact of widely spread respiratory infectious pandemics, including the recent 
COVID-19, by taking into account the pandemic’s characteristics, the healthcare system parameters, and the 
socio-economic aspects of the community. The theoretical framework underpinning this work involves the use of 
a reinforcement learning-based agent to derive constrained optimal policies for tuning a closed-loop control 
model of the disease transmission dynamics.   

1. Introduction 

Mankind has witnessed several pandemics in the past including 
plague, leprosy, smallpox, tuberculosis, AIDS, cholera, and malaria 
[1–3]. The historic timeline of pandemics suggests that the frequency of 
occurrence is increasing and in an era wherein globalization is 
happening at an accelerated pace, we are more likely to confront many 
such threats in the near future [4–7]. Hence, it is quite imperative to 
consolidate the lessons learned out of our experience with the current 
COVID-19 global pandemic towards building a resilient community with 
people prepared to prevent, respond to, combat, and recover from the 
social, health, and economic impacts of pandemics. Preparedness is a 
key factor in mitigating pandemics. It encompasses inculcating aware-
ness about the outbreaks and fostering response strategies to ensure 
avoiding loss of life and socio-economic havoc. While the emergence of a 
harmful microorganism with pandemic potential may be unpreventable, 
pandemics can be prevented [4]. Preparedness includes technological 
readiness to identify pathogen identity, fostering drug discovery, and 
developing reliable theoretical models for prediction, analysis, and 
control of pandemics. 

Lately, collaborative efforts among epidemiologists, microbiologists, 
geneticists, anthropologists, statisticians, and engineers have 

complimented the research in epidemiology and have paved the way for 
improved epidemic detection and control [8,9]. There exists an enor-
mous amount of studies concerning epidemiological models and the use 
of such theoretic models in deriving cost-effective decisions for the 
control of epidemics. Sliding mode control, tracking control, optimal 
control, and adaptive control methods have been applied to control the 
spread of malaria, influenza, zika virus, etc. [7,10–12]. Optimal control 
methods are used to identify ideal intervention strategies for mitigating 
epidemics that accounts for the cost involved in implementing phar-
maceutical or nonpharmaceutical interventions (PI or NPI). For 
instance, in [13], a globally-optimal vaccination strategy for a general 
epidemic model (susceptible-infected-recovered (SIR)) is derived using 
the Hamilton-Jacobi-Bellman (HJB) equation. It is pointed out that such 
solutions are not unique and a closer analysis is needed to derive 
cost-effective and physically realizable strategies. In [14], the hyper-
chaotic behavior of epidemic spread is analyzed using the SEIR (sus-
ceptible-exposed-infected-recovered) model by modeling nonlinear 
transmissibility. 

Even though various optimization algorithms were used to derive 
time-optimal and resource-optimal solutions for general epidemic 
models, only a few of the possibilities have been explored for COVID-19 
in particular. The majority of the model-based studies for COVID-19 
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discuss various scenario analyses such as the influence of isolation only, 
vaccination only, and combining isolation with vaccination on the 
overall disease transmission [15–19]. Even though several works 
focused on evaluating the influence of various control interventions on 
the mitigation of COVID-19, only very few literature discuss the deri-
vation of an active intervention strategy from a control-theoretic view-
point. In [20], the authors discuss an SEIR model-based optimal control 
strategy to deploy strict public-health control measures until the avail-
ability of a vaccine for COVID-19. Simulation results show that the 
derived optimal solution is more effective compared to constant-strict 
control measures and cyclic control measures. In [21], optimal and 
active closed-loop intervention policies are derived using quadratic 
programming method to mitigate COVID-19 in the United States while 
accounting for death and hospitalizations constraints. 

In this paper, we propose the development and use of a reinforce-
ment learning-based closed-loop control strategy as a decision support 
tool for mitigating COVID-19. Reinforcement Learning (RL) is a category 
of machine learning that has proved promising in handling control 
problems that demand multi-stage decision support [22]. With the 
exponential advancement in computing methods, machine 
learning-based methods are becoming increasingly useful in many 
biomedical applications. For instance, RL-based controllers have been 
used to make intelligent decisions in the area of drug dosing for patients 
undergoing hemodialysis, sedation, and treatment for cancer or 
schizophrenia [22–27]. Similarly, machine-learning experts are 
contributing to the area of epidemics detection and control [9,28,29]. In 
[6], the RL-based method is used to make optimal decisions regarding 
the announcement of an anthrax outbreak. Data on the benefits of true 
alarms and the cost associated with false alarms are used to formulate 
and solve the problem of the anthrax outbreak announcement in a 
RL-framework. Decisions concerning the declaration of an outbreak are 
evaluated by defining six states such as no outbreak, waiting day 1, 
waiting day 2, waiting day 3, waiting day 4, and outbreak detected. 

Using RL-based closed-loop control, at each stage, decisions can be 
revised according to the response of the system that embodies a multi-
tude of uncertainties. In the case of a mathematical model that repre-
sents COVID-19 disease transmission dynamics, uncertainties include 
system disturbance such as a sudden increase in exposure rate due to 
school reopening or reduced transmission due to increased compliance 
of people or any other unmodeled system dynamics. The underlying 
strategy behind RL-based methods is the concept of learning an ideal 
policy from the agent’s experience with the environment. Basically, the 
agent (actor) interacts with the system (environment) by applying a set 
of feasible control inputs and learns a favorable control policy based on 
the values attributed to each intervention-response pair. 

The mathematical formulation of the optimal control problem under 
RL-framework allows it to be used as a tool for optimizing intervention 
policies. The focus of this paper is to present such a learning-based 
model-free closed-loop optimal and effective decision support tool for 
limiting the spread of COVID-19. We use a mathematical model that 
captures COVID-19 transmission dynamics in a population as a 

simulation model instead of the real system to collect interaction data 
(intervention-response) required for training the RL-based controller. 
The main contributions of this work can be summarized as follows: (1) 
Novel disease spread model that accounts for the influence of NPIs on 
the overall disease transmission rate and specific infection rates during 
the asymptomatic and symptomatic periods, (2) Development of an RL- 
based closed-loop controller for mitigating COVID-19, and (3) Design of 
reward function to account for cost and hospital saturation constraints. 

The organization of this paper is as follows. In Section 2, a mathe-
matical model for COVID-19 and the development of a RL-based 
controller are presented. Simulation results for two case studies are 
given in Section 3. Robustness of the controller with respect to various 
disturbances are also discussed in this section. Conclusions and scope for 
future research are presented in Section 4. 

2. Methods 

2.1. RL-framework 

The proposed approach incorporates the development of a decision 
support system that utilizes a Q-learning-based approach to derive 
optimal solutions with respect to certain predefined cost objectives. The 
main components of the RL-framework include an environment (system 
or process) whose output signals need to be regulated and an RL-agent 
that explores the RL environment to gain knowledge about the system 
dynamics towards deriving an appropriate control strategy. Schematic 
of such a learning framework is shown in Fig. 1, where the population 
dynamics pertaining to COVID-19 represents the RL environment, and 
control interventions represent the actions imposed by the RL-agent. 

In this paper, Watkin’s Q-learning algorithm which does not demand 
an accurate or complete system model is used to train the RL-agent [27, 
30]. The control objective is to derive an optimal control input that 
minimizes the infected population while minimizing the cost associated 
with interventions. The RL-based methodology provides a framework 
for an agent to interact with its environment and receive rewards based 
on observed states and actions taken. In Q-table, the desirability of an 
action when in a particular system state is encoded in terms of a quan-
titative value calculated with respect to the reward incurred for an 
intervention-response pair. The goal of an RL-based agent is to learn the 
best sequence of actions that can maximize the expected sum of returns 
(rewards). Note that the RL-based controller design is model-free and 
does not rely on parameter knowledge of the system but it utilizes the 
intervention-response observations from the environment. Specifically, 
the RL-based controller design discussed in this paper requires the in-
formation on the number of susceptibles and severely infected cases. As 
mentioned earlier, instead of the real system we use a simulation model 
to obtain intervention-response data to train the RL-agent. The model is 
given by [20]: 

dS(t)
dt

= − β(t)S(t) − μ′S(t), S(0) = S0, (1) 

Fig. 1. Schematic representation of reinforce-
ment learning framework for COVID-19. This 
learning-based controller design is predicated 
on the observed data obtained as a response to 
an action imposed on the population. The 
response data y(k) include the number of 
infected, hospitalized, recovered, etc. Error is 
the difference between observed number of 
severely infected and desired number of 
severely infected (Isd). Learning is facilitated 
based on the reward rk incurred according to 
the state (sk), action(ak), new state (sk+1).   
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dEm(t)
dt

= pβ(t)S(t) − τLEm(t) − μ′Em(t) + pρ, Em(0) = Em0, (2)  

dIam(t)
dt

= τLEm(t) − τIIam(t) − μ′ Iam(t), Iam(0) = Iam0, (3)  

dIm(t)
dt

= τIIam(t) − (λ1 + μ′

)Im(t), Im(0) = Im0, (4)  

dRm(t)
dt

= λ1Im(t) − μ′ Rm(t), Rm(0) = Rm0, (5)  

dEs(t)
dt

= (1 − p)β(t)S(t) − τLEs(t) − μ′ Es(t) + (1 − p)ρ, Es(0) = Es0,

(6)  

dIas(t)
dt

= τLEs(t) − τIIas(t) − μ′ Ias(t), Ias(0) = Ias0, (7)  

dIs(t)
dt

= τIIas(t) − (λ2 + μ′

+ μ)Is(t), Is(0) = Is0, (8)  

dRs(t)
dt

= λ2Is(t) − μ′

Rs(t), Rs(0) = Rs0, (9)  

dD(t)
dt

= μIs(t) + μ′ N(t), D(0) = D0, (10)  

with 

N(t) = S(t) + E(t) + A(t) + I(t) + R(t), N(0) = N0, (11)  

E(t) = Em(t) + Es(t), E(0) = E0, (12)  

Ia(t) = Iam(t) + Ias(t), Ia(0) = Ia0, (13)  

I(t) = Im(t) + Is(t), I(0) = I0, (14)  

R(t) = Rm(t) + Rs(t), R(0) = R0, (15)  

where S(t) denotes the number of susceptibles, Em(t) and Im(t) denote 
the number of exposed and mildly infected symptomatic patients, 
respectively, Rm(t) is the number of recovered patients from mild 
infection, Es(t) and Is(t) denote the number of exposed and severely 
infected symptomatic patients, Iam(t) and Ias(t) denote asymptomatic 
patients who later on move to mildly and severely infected compart-
ments, respectively, and D(t) is the total number of direct and indirect 
death due to COVID-19 [20]. Out of the total number of exposed, a 

larger proportion (Em(t) > 80% of E(t)) develop mild infection and rest 
(Es(t)) develop severe infection after a delay. The intervention-response 
data required for training the RL-agent is derived using the mathemat-
ical model (1)–(10). Fig. 2 shows the corresponding compartmental 
representation, where the state vector x(t) = [S(t),Em(t), Iam(t), Im(t),
Rm(t), Es(t), Ias(t), Is(t),Rs(t),D(t)]T (Table 1). 

The transmission parameter β(t) in (1)–(10) is given by 

β(t) = (1 − u1(t))(γA(1 − u2(t))(Iam(t) + Ias(t)) + γI(1 − u3(t))(Im(t)

+ mIs(t))), (16)  

where 

γA = γI =
R0

S0
λ1τI

μmin + λ2

(λ1 + pτI)(μmin + λ2) + mλ1τI(1 − p)
, (17)  

μ′

=

{
0 if Is(t) < H
μH if Is(t) ≥ H , (18)  

Fig. 2. Compartmental model (1)–(10) of COVID-19 that accounts for differential disease severity and import of exposed cases into the population [20].  

Table 1 
Parameter descriptions for model (1)–(21).  

Parameter Parameter description 

S(t) Susceptibles 
Em(t), Es(t) Exposed individuals with mild or severe infection 
Iam(t), Ias(t) Infectious asymptomatic patients with mild or severe infection 
Im(t), Is(t) Infectious symptomatic patients with mild or severe infection 
Rm(t), Rs(t) Recovered patients who had mild or severe infection 
β(t) Exposure rate 
τL  Waiting rate to viral shedding 
τI  Waiting rate to symptom onset 
λ1  Recovery rate of mildly infected patients 
λ2  Recovery rate of severely infected patients 
p  Fraction of mild infections 
m  Modification factor to account for reduced transmission factor of 

severely infected 
θc  Case-fatality related to severe infection 
μH  Natural death related to hospital saturation 
H  Hospital capacity 

μ′ Rate of indirect death due to COVID-19 

μ  Rate of direct death due to COVID-19 
ρ  Immigration or import rate 
γA  Infection rate related to Iam and Ias (Asymptomatic transmission)  
γI  Infection rate related to Im and Is (Symptomatic transmission)   
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μ =

{
μmin if Is(t) < H
μmax if Is(t) ≥ H , (19)  

μmin = λ2
θc

1 − θc
, (20)  

μmax = 2μmin. (21) 

Table 1 details the parameter descriptions pertaining to model (1)– 
(10). 

The obvious increase in the disease exposure of the population in 
susceptible compartment following the increase in the number of Iam(t), 
Ias(t), Im(t), and Is(t) is modeled in (16), where γA and γI are the rates at 
which the population with asymptomatic and symptomatic disease 
manifestation infect the susceptible population, respectively, ui(t), i = 1,
2, 3, account for the influence of various control interventions on the 
transmission rate of the virus, and m is the modification parameter used 
to model the reduced transmission rate of the severely sick population as 
they will be moved to hospital hence under strict isolation. Specifically, 
u1(t) accounts for the impact of travel restrictions on the overall mobility 
and interactions of the population in various infected compartments, 
u2(t) accounts for the efforts to reduce the infection rate γA (during the 
asymptomatic period). Asymptomatic patients often remain undetected 
and hence awareness campaigns to increase the compliance of people 
can reduce the chance of infection spread during the asymptomatic 
period. Specific efforts to reduce the infection rate γI (during symp-
tomatic period) is accounted by u3(t). This includes hospitalization of 
severely infected (Is(t)) and isolation/quarantine of mildly infected 
(Im(t)) that will reduce the chance of infection spread during the 
symptomatic period. The viability of each of the control inputs ui(t), i =

1, 2, 3, in controlling the overall transmission rate β(t) is different, an 
increase in u1(t) results in an overall reduction in β(t) (e.g. lockdown or 
travel ban influence interaction rate among Iam(t), Ias(t), Im(t), and Is(t)), 
where as an increase in u2(t) (e.g. increased hygiene habits due aware-
ness) or u3(t) (e.g. strict exposure control measures and bio hazard 
handling protocols at healthcare facilities) reduces the disease trans-
mission through Ia(t) or I(t), respectively. 

It should be noted that apart from death due to COVID-19, there can 
be indirect fatalities due to the overwhelming of hospitals and the 
allocation of hospital resources for the management of the pandemic. 
The indirect fatalities account for the death of the patients due to the 
unavailability of medical attention or inaccessibility of hospitals. In 
(18), the death rate indirectly related to COVID-19 is denoted as (μ′

), 
and it is set to zero if the active number of the severely infected popu-
lation is below the hospital capacity (H) and is set to μH whenever 
hospitals are saturated, where μH models the increase in the mortality 
rate due to inaccessibility to hospitals. Similarly, direct death due to 
COVID-19 (μ) can also increase significantly when hospitals saturate, 
hence μmax is set to double when Is(t) ≥ H [20]. 

In the control theory view point, the model (1)–(21) can be written in 
the form 

dx(t)
dt

= f (x(t), u(t)),

y(t) = h(x(t)),
(22)  

where x(t) ∈ ℛ10 is the state vector that model the dynamics in the 
compartments shown in Fig. 2, u(t) ∈ ℛ3 is the control input, and y(t) ∈
ℛ2 is the output (observations) of the system, y(t) = [y1(t), y2(t)]T, 
where y1(t) = x1(t) and y2(t) = x8(t). Similarly, in the finite Markov 
decision process (MDP) framework, the system (environment) dynamics 
are modeled in terms of finite sequences 𝒮, 𝒜, ℛ, and ℘, where 𝒮 is a 
finite set of states, 𝒜 a finite set of actions defined for the states sk ∈ 𝒮, ℛ
represents the reward function that guides the agent in accordance to 
the desirability of an action ak ∈ 𝒜, and ℘ is a state transition probability 
matrix. The state transition probability matrix ℘ak (sk, sk+1) gives the 

probability that an action ak ∈ 𝒜 takes the state sk ∈ 𝒮 to the state sk+1 in 
a finite time step. Furthermore, the discrete states in the finite sequence 
𝒮 are represented as (𝒮i)i∈I+ , where I+≜{1,2,…, q} and q denotes the 
total number of states. Likewise, the discrete actions in the finite 
sequence 𝒜 are represented as (𝒜j)j∈J+ , where J+≜{1,2,…, q′

} and q′

denotes the total number of actions. The transition probability matrix ℘
can be formulated based on the system dynamics (22). Note that, since 
the Q-learning framework does not require ℘ for deriving the optimal 
control policy, we assume ℘ is unknown [24,27]. 

In the case of epidemic control, the goal is to derive an optimal 
control sequence to take the system from a nonzero initial state to a 
desired low infectious state. This problem of deriving action sequence 
for bringing down the number of infected people requires multi-stage 
decision making based on the response of the population to various 
kinds of control interventions. Note that, changes in the overall popu-
lation dynamics in response to interventions depend upon how far 
people comply with the restrictions imposed by the government. As 
shown in Fig. 1, this can be achieved by using the RL algorithm defined/ 
built on the MDP framework by iteratively evaluating action-response 
sequences observed from system [31,32]. 

2.2. Training the agent 

RL-based learning phase starts with an initial arbitrary policy, for 
instance with a Q-table with zero entries. Q-table is a mapping from 
states sk ∈ 𝒮 to a predefined set of interventions ak ∈ 𝒜 [32]. Each entry 
of the Q-table (Qk(sk, ak)) associates an action in the finite sequence 
(𝒜j)j∈J+ to a state of the finite sequence (𝒮i)i∈I+ . In the case of epidemic 
control, a policy represents a series of interventions that have to be 
imposed on the population to shift the initial status of the environment 
to a targeted status which is equivalent to the desired set of system 
states. With respect to a learned Q-table, a policy is a sequence of de-
cisions embedded as values in Q-table which corresponds to decisions 
such as “if in state sk, take the ideal action ak ∈ 𝒜”. 

As shown in Fig. 1, during the training phase, the agent imposes 
control actions (ak) on the RL environment and as the agent gains more 
and more experience (observations) from the environment the initial 
arbitrary intervention policy is iteratively updated towards an optimal 
intervention policy. One of the key factors that helps the agent to assess 
the desirability of an action and guides it towards the optimal inter-
vention policy is the reward function. Reward function associates an 
action ak with a numerical value rk+1 ∈ ℝ (reward) with respect to the 
state transition sk→sk+1 of the environment in response to that action. 
Reward incurred depends on the ability of the last action in transitioning 
the system states towards the target state or goal state (Gs). The reward 
can be negative or positive for inappropriate or appropriate actions, 
respectively. 

An optimal intervention policy is derived by maximizing the ex-
pected value (E[⋅]) of the discounted reward (rk) that the agent receives 
over an infinite horizon denoted as 

J(rk) = E

[
∑∞

k=1
θ(k− 1)rk

]

, (23)  

where the discount rate parameter θ ∈ [0, 1] represents the importance 
of immediate and future rewards. With a value of θ = 0, the agent 
considers only the immediate reward, whereas for θ approaching 1 it 
considers immediate and future rewards. Based on the experience 
gained by the agent at each time step k = 1,2,…, the Q-table is updated 
iteratively as 

Qk(sk, ak)⟵Qk− 1(sk, ak) + ηk(sk, ak)[rk+1 + θmaxak+1 Qk− 1(sk+1, ak+1)

− Qk− 1(sk, ak)], (24)  

where ηk(sk, ak) ∈ [0,1) is the learning rate. A tolerance parameter δ, 
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ΔQk≜|Qk − Qk− 1| ≤ δ is used to specify minimum threshold of conver-
gence [30,32,33]. 

2.3. Reward 

As shown in Fig. 1, learning is facilitated based on the reward (rk) 
incurred according to the state (sk), action (ak), and new state (sk+1). The 
control interventions (actions) imposed on the population basically 
reduce the disease transmission rate as depicted in (16). As the vaccine 
for COVID-19 is not approved yet, the control measures against this 
disease broadly rely on two major factors, namely, I) non- 
pharmaceutical interventions (NPIs) such as restriction on the social 
gathering, closure of institutes, and isolation; and II) available phar-
maceutical interventions (PIs) such as hospital care with supporting 
medicines and equipment such as ventilators. Constraints in the health 
care system such as the number of medical personnel, intensive care 
beds, COVID-19 testing capacity, COVID-19 isolation and quarantine 
capacity, dedicated hospitals, and ventilators, as well as the compliance 
of the society with the interventions are the major challenges for health 
care system. 

The choice of the reward function is critical in guiding the RL-agent 
towards an optimal intervention policy that will drive the population 
dynamics to a desired low infectious state while minimizing the socio- 
economic cost involved. Hence, the reward rk+1 is designed to incor-
porate the influence of three factors 

(1) r1
k+1 is used to penalize the agent if Is(t) exceeds hospital satura-

tion capacity H.  
(2) r2

k+1 is used to assign a proportional reward to the RL-agent’s 
actions that reduce Is(t).  

(3) r3
k+1 is used to reward/penalize the agent according to the cost 

associated with the implementation of various control 
interventions. 

The reward rk+1 in (24) is calculated as: 

r1
k+1 =

{
− 1 if Is((k + 1)T) > H,

0 otherwise, (25)  

r2
k+1 =

⎧
⎨

⎩

e((k + 1)T) − e(kT)
e(kT)

if e((k + 1)T) < e(kT),

0 if e((k + 1)T) ≥ e(kT),
(26)  

r3
k+1 =

⎧
⎪⎪⎨

⎪⎪⎩

+1.3 if cak = very low cost,
+1.2 if cak = low cost,
+1 if cak = medium cost,
− 1 if cak = high cost,

(27)  

where e(kT) = Is(kT) − Isd, Isd is the desired value of Is(t), kT ≤ t < (k+
1)T, and cak is the cost associated with each action set. In (27), very low 
cost, low cost, medium cost, and high cost action represent a predefined 
combination of actions that are associated with a range of cost such as 
0–30%, 20–50%, 30–70%, and 30–90%, respectively (see Table 3). The 
total reward is: 

rk+1 = r1
k+1 + r2

k+1 + βwr3
k+1, (28)  

where βw is used to relatively weigh the cost of interventions over the 
infection spread. 

The RL-based controller design is predicated on the intervention- 
response observations that is obtained during the interaction of the 
RL-agent with the RL-environment (real or simulated system). The states 
sk of the population dynamics is defined in terms of the observable 
output y(t), as sk = g(y(t)), kT ≤ t < (k+ 1)T, where g : ℝ2→𝒮⊂ℝ [27, 
24]. In the case of COVID-19, it is widely agreed that the currently re-
ported number of cases actually corresponds to the cases 10–14 days 

back. This delay is due to the virus incubation time and delay involved in 
diagnosis and reporting [21]. The influence of such delays is reflected in 
the intervention-response curves as well. Hence, for training the 
RL-agent using the Q-learning algorithm, for each action ak imposed on 
the system, the system states (sk) are assessed using sk = e(t) = Is(t) −
Isd, kT ≤ t < (k+ 1)T, where T = 14 days. Specifically, as the sampling 
time T is set to 14 days, the reward rk+1 reflects the response of the 
system for an action ak imposed on the system 14 days ago. 

As mentioned earlier, the Q-learning algorithm starts with an arbi-
trary Q-table and based on the information on the current state (sk), 
action (ak), new state (sk+1), and reward (rk+1), the Q-table is updated 
using (24). See Tables 2 and 3. In each episode, the system states are 
initialized at a random initial state sk, and the RL-agent imparts control 
actions to the system to calculate the reward incurred and to update the 
Q-table until sk = Gs is reached. The initial Q-table with arbitrary values 
is expected to converge to the optimal one as the algorithm is iterated 
through several episodes with progressively decreasing learning rates 
[32,34]. During training, the agent assesses the current state sk of the 
system and imparts an action ak by following ϵ-greedy policy, where ϵ is 
a small positive number [24,27,32]. Specifically, at every time step, the 
RL-agent chooses random actions with ϵ probability and ideal actions 
otherwise (1 − ϵ) [32]. After convergence of the Q-table, the RL-agent 
chooses the action ak as 

ak = (𝒜j)j∈J+ , j = arg maxQk(sk, ⋅). (29)  

As the RL-based learning is predicated on the quantity and quality of the 
experience gained by the agent from the environment, the more it ex-
plores the environment, the more it learns. To learn an optimal policy, 
the RL-agent is expected to explore the entire RL-environment sufficient 
number of times, ideally an infinite number of times. However, in most 
cases, convergence is achieved with an acceptable tolerance δ satisfying 
ΔQk ≤ δ for some finite number of episodes provided the learning rate 
ηk(sk, ak) is reduced as the learning progresses [24,27,32]. 

3. Simulation results 

In this section, two numerical examples are used to illustrate the use 
of Q-learning algorithm for the closed-loop control of COVID-19. For 
Case 1, the closed-loop performance of the RL-based controller is 
demonstrated using the COVID-19 disease transmission dynamics in a 
general population simulated using the model parameter values given in 
[20]. For Case 2, the COVID-19 disease transmission dynamics in Qatar 
is simulated using the model parameter values given in [35] and [36]. 
Some of the parameter values for Case 2 are set based on the data 
available online [37–40]. Two different RL-agents are obtained for each 

Table 2 
State assignment based on e(t) and S(t), (𝒮i)i∈I+ , where I+≜{1,2,…,q}, q = 20.  

Case 1 

S(t) > 3× 107  S(t) ≤ 3× 107  

ith state (sk) in 𝒮i  e(kT) ith state (sk) in 𝒮i  e(kT)

1  [0, 100] 11  [8× 105, ∞]  
2  (100, 1000] 12  (6× 105, 8× 105]  
3  (1000, 5× 104]  13  (5× 105, 6× 105]  
4  (5× 104, 1.5× 105]  14  (4× 105, 5× 105]  
5  (1.5× 105, 3× 105]  15  (3× 105, 4× 105]  
6  (3× 105, 4× 105]  16  (1.5× 105, 3× 105]  
7  (4× 105, 5× 105]  17  (5× 104, 1.5× 105]  
8  (5× 105, 6× 105]  18  (1000, 5× 104]  
9  (6× 105, 8× 105]  19  (100, 1000]  

10  (8× 105, ∞]  20  (0, 100]  
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of the cases using MATLAB®. 
Fig. 3 shows the schematic diagram of RL-based closed-loop control 

of COVID-19. In the RL-based closed-loop set up, the RL-agent is capable 
of deriving the optimal intervention policy to drive the system in any 
state sk ∈ 𝒮, (𝒮i)i∈I+ to the goal state (Gs) based on the converged 
optimal Q-table. Specifically, the agent assess the current state sk of the 
system and then imparts the action ak ∈ 𝒜,(𝒜j)j∈J+ , J+≜{1,2,…,q′

}, q′

=

20 which corresponds to the maximum value in the Q-table as deter-
mined using (29). 

For training the RL-agent, the parameter βw in the reward function 
(28) is set to βw = 0.5. The choice between βw = 0.5 and a higher value 
(e.g. βw = 1) depends on the resource availability and cost affordability 
of the community. Compared to βw = 0.5, the agent is penalized with a 
higher negative value when βw = 1 is used. Hence, with βw = 1, the 
agent tends to avoid actions in the high-cost set and opts only for low- 
cost inputs. For training the RL-agent, we iterated 20,000 (arbitrarily 
high) scenarios, where a scenario represents the series of transitions 
from an arbitrary initial state to the required terminal state Gs. 
Furthermore, we initially assigned ηk(sk, ak) = 0.2 for the first 499 sce-
narios and then the value of ηk(sk, ak) is subsequently halved after every 
500th scenario. After convergence of the Q table to the optimal 

Q-function, for every state sk, the agent chooses an action ak = (𝒜j)j∈J+ , 
where j = arg maxQk(sk, ⋅) (Fig. 3). Table 4 summarizes the parameters 
used in the Q-learning algorithm. 

Case 1: A general population dynamics is used in this case to evaluate 
the performance of the RL-based closed-loop control for COVID-19. 
Tables 5 and 6 shows the parameter values and initial conditions 
used for simulating the model (1)–(21). First, the compartmental dy-
namics x(t) = [S(t),Em(t), Iam(t), Im(t),Rm(t),Es(t), Ias(t), Is(t),Rs(t),D(t)]T 

is simulated with the initial conditions N0 = 67× 106, I0 = 120, and 
S0 = 66.99 × 106 in (1)–(21) without any control intervention (Fig. 4). 
It can be seen from Fig. 4 that the number of severely ill patients (Is(t)) 
who need hospitalization has peaked to 1.104 × 106 at 210th day of the 
epidemics. Also note that from the 98th day to 336th day, the number of 
severely infected is above the hospital capacity (H = 1.2× 104) which 
has lead to an increased death due to COVID-19 (1056 on 98th day 
increased to 1.55 × 106 on 336th day). Similarly, indirect death due to 
COVID-19 has increased (0 on 98th day to 1.58 × 105 on 336th day) due 
to the hospital saturation. As given in (10), it can be seen that the state 
trajectory of D(t) in Fig. 4 shows the total number of death due to direct 
and indirect impact of COVID. 

Note that the number of susceptibles (S(t)) reduces monotonically 

Fig. 3. RL-based closed-loop control of COVID-19.  

Table 3 
Action set, ak ∈ 𝒜, (𝒜j)j∈J+ , J+≜{1,2,…,q′

}, q′

= 20.  

j→  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

u1  0 0 0 0.2 0.2 0.5 0.5 0.5 0.5 0 0.7 0.7 0.7 0.7 0.7 0.9 0.9 0.9 0.9 0.9 

u2  0 0 0.3 0 0 0 0 0.3 0.3 0.3 0 0.3 0.5 0.3 0.5 0 0.3 0.5 0.3 0.5 

u3  0 0.3 0 0 0.3 0 0.3 0 0.3 0.3 0 0.5 0.3 0.3 0.5 0 0.5 0.3 0.3 0.5 

cak  Very low cost Low cost Medium cost High cost  

Table 5 
Initial conditions for model (1)–(15).  

Parameter Initial condition (Case 1) Initial condition (Case 2) 

N0  67× 106  2,881,053 

I0  0.01H  1  
S0  N0 − I0  N0 − I0  

Im0  pI0  pI0  

Is0  (1 − p)I0  (1 − p)I0  

Em0, Es0  0 3, 0 
Iam0, Ias0  0 0 
Rm0, Rs0  0 0 
D0  0 0  

Table 4 
Parameters used in the Q-learning algorithm.  

Parameter Value 

k  20,000 
T  14 days 
θ  0.69 
ηk  Initialized at 0.2 then halved every 500th episode 
δ  0.05 
βw  0.5,1 
rk  Calculated using (28) 
ϵ  Initialized at 1 then reduced by 0.05 every 500th episode until ϵ = 0.05 

is reached   
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over time due to increased movement of people to the exposed or 
infected compartments (Fig. 4). Similarly, the number of people in re-
covery compartments and death compartment increases monotonically 
as they are terminal compartments. However, in other compartments 
including the severely infected (Is(t)), the number initially increases and 
then decreases. Hence, the value of e(t), kT ≤ t < (k+ 1)T, can be in the 

same range during initial and final phases of the trajectory (Fig. 4). 
However, the status quo of the system at these two phases are different 
as reflected in the trajectory of the susceptible population. Hence, 
different state-assignments are necessary in these two phases for the RL- 
agent to differentiate between the regions with similar e(t) values but 
different S(t) values. Hence, we assign i states, i = 1,…,10 for S(t) > 3 ×

107 and i = 11,…,20 otherwise. See Table 2 for the state assignments 
based on the values of e(kT) and S(t) used for Case 1. The goal state for 
this case is set as Gs ∈ (𝒮i)i∈I+ , i = 1, which corresponds to the case 
where e(kT) ∈ [0, 100] and S(t) > 3× 107. 

Even though (𝒮i)i∈I+ , i = 1 and i = 20 corresponds to same error 
range (e(kT) = [0,100]), choosing i = 1 as target state while training the 
RL-agent ensures that a low infectious state is achieved by keeping the 
number of susceptibles S(t) > 3× 107. This implies that the RL-agent 
will ensure that not all people in the susceptible compartment are 
eventually infected before the epidemics is contained. At this juncture, 
an obvious question regarding the choice of the goal state is about the 
possibility to set the goal state for training the RL-agent as e(kT) ∈ [0,
100] and S(t) > N0 − Imin, where Imin represents the minimum number of 
infected in thousands range instead of high range of values such as S(t)
> 3× 107. Choosing a very low value of Imin can be achieved by 
implementing very strict control measures over a sufficiently long 
period, however, in a community with porous borders (number of 
infected imported cases ρ > 0) and in case of a disease with high number 
of asymptomatic undetected carriers/patients, the likelihood of expo-
nential infection spread when the restrictions are relaxed is very high. 
This squanders all the initial efforts taken to contain the disease and the 
country is more likely to see a delayed peak. 

Table 3 presents the action set used for training the RL-agent. In (16), 
u1(t), kT ≤ t < (k+ 1)T, corresponds to restrictions on travel and social 
gathering, including lockdown and social distancing. Since 100% 

Fig. 4. System states without intervention for Case 1.  

Table 6 
Parameter values for model (1)–(21). For Case 1, the minimum, maximum, and 
typical values are shown in order [20]. For Case 2, nominal values used for 
simulation are shown [36–38,40,41].  

Parameter Values (Case 1) Values (Case 2) 

τL  0.21–0.27 (days− 1) (typ. val. 1/4.2)  0.238 (days− 1)

τI  0.9–1.1(days− 1) (typ. val. 1)  1 (days− 1)

λ1  0.025–0.1 (days− 1) (typ. val. 1/17)  0.1167 (days− 1)

λ2  0.039–0.13 (days− 1) (typ. val. 1/20)  0.0583 (days− 1)

p  0.85–0.95 (days− 1) (typ. val.0.9)  0.95 (days− 1)

m  0.2 0.2 
θc  0.135–0.165 (days− 1) (typ. val. 0.15)  - 

β(t) Calculated using (16) Calculated using (16) 
γA = γA  Calculated using (17) Calculated using (17) 

μ′ Calculated using (18) Calculated using (18) 

μH  10− 5 (days− 1) 1 × 10− 6 (days− 1)

μ  Calculated using (19) Calculated using (19) 
μmin  Calculated using (20) (days− 1) 0.0014 (days− 1)

μmax  Calculated using (21) (days− 1) 0.0028 (days− 1)

ρ  2 (days− 1) 5 (days− 1)

H  12,000 3500 
R0  2–3 (typ. val. 2.5) 2.1  
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restrictions are infeasible and not practically implementable, the action 
set ak ∈ 𝒜,(𝒜j)j∈J+ , J+≜{1,2,…,q′

}, q′

= 20 is set to {0,0.2,0.5,0.7,0.9}. 
Similarly, u2(t), kT ≤ t < (k+ 1)T, which corresponds to the effect of 
awareness campaign and compliance of people is set to {0,0.3, 0.5} as 
creating awareness to achieve 100% compliance is infeasible. Finally, 
u3(t), kT ≤ t < (k+ 1)T, which corresponds to the efforts taken to hos-
pitalize infected and severely sick Is(t) or to quarantine patients with 
mild infection Im(t) is set to {0,0.3,0.5}. 

Fig. 5 shows the convergence of Q-table for Case 1. Figs. 6 and 7 

shows the closed-loop performance of the controller with initial condi-
tions x(0) = [50,597,143, 2, 328,863, 537,252,5, 415,175, 6,438,
046, 258,762, 59,694, 554,909, 564,627, 245,911]T. With Is0 = 554,
909, this case corresponds to Is0 > H when the RL-based controller is 
used. As shown in Table 7, the time duration for which Is(t) ≥ H is 238 
days for no intervention and reduced to 110 days with RL-based control. 
Compared to the no intervention case with D(600) = 1.71× 106, the 
number of death has reduced to 1.36 × 106 with RL. Note that, out of the 
total death at t = 600, 2.45 × 105 corresponds to the initial value D0. 
The peak value of Is(t) is slightly more because the initial condition itself 
was 5.55 × 105 and a fraction of initial high number of population in the 
exposed (Es0), and asymptomatic infected (Ias0) also moves to the 
severely infected compartment. Note that the peak value of Is(t) repre-
sents the number of active cases at a time point, not the total number of 
infected. The total number of infected has reduced to 4.74 × 107 

compared to the value 5.97 × 107 in the case of no intervention. 
Figs. 8 and 9 shows the closed-loop performance of the RL-based 

controller with initial conditions x(0) = [66,685,532, 56,199, 12,
634, 107,422,106,982, 6244, 1403,11,935, 10,104, 1783]T, i.e. with 
Is0 = 11,935, this scenario represent a case when Is0 < H when the RL- 
based controller is used. As shown in Table 7, the time duration for 
which Is(t) ≥ H is 238 days for no intervention and reduced to 0 days 
with RL-based control. Compared to the no intervention case with 
D(600) = 1.71× 106, number of death has reduced to 1.39 × 104 with 
RL. Note that, out of the total death at t = 600, 1783 corresponds to the 
initial value of D0. The peak value of Is(t) has reduced to 1.19 × 104 from 
a value of 1.1 × 106 for no intervention and the total number of infected 
has reduced to 5 × 105 compared to the value 5.97 × 107 in the case of 
no intervention. 

Fig. 6. System states with RL-based control, Case 1, Is0 > H, with initial conditions x(0) = [50,597,143, 2, 328,863, 537,252,5,415, 175, 6,438, 046, 258,762, 59,
694, 554, 909, 564,627, 245,911]T. 

Fig. 5. Convergence of Q-table for Case 1. Iterated for 20,000 episodes.  
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Figs. 10 and 11 show the robustness of the RL-based controller under 
model parameter uncertainties. The plots show the dynamics in mildly 
and severely infected compartments for nominal, minimum, and 
maximum values of model parameters. It can be seen that for all three 
cases the number of severely infected people (Is(t)) is below 1000 within 
210 days. Moreover, Is(t) ≤ H is achieved within 30, 80, and 130 days 
for maximum, nominal, and minimum values of model parameters. 

Comparing the control inputs for the cases Is0 < H and Is0 ≥ H, it can 
be seen that the control input for the latter case (Fig. 7) is more cost- 
effective. However, in the case corresponding to Fig. 9, the control 
input is not coming down to zero as the number of susceptible in the 
compartment is very high as only 5 × 105 peoples are infected. In this 
case, as there are imported infected cases and many unreported cases in 
the community, the number of cases will increase once the restrictions 
are relaxed. These results are in line with the effective control sugges-
tions for earlier pandemics. In the case of an earlier influenza pandemic, 
studies suggested that controlling the epidemic at the predicted peak is 
most effective [42]. Closing too early results in the reappearing of cases 
if restrictions are lifted and require restrictions for a longer time period. 
Note that the reward function (25)–(27) is designed to train the 
controller (RL-agent) to chose control inputs that will minimize the total 
number of severely infected and penalize the use of high-cost control 
input (see Table 3). Designing a reward function that will penalize the 
RL-agent for variations in the control input and that can account for 
various delays in the system is an interesting extension of the current 

framework. 
Considering the incubation time and delay in reporting (10–14 days), 

the observable output y(t), sk = g(y(t)), kT ≤ t < (k+ 1)T, k = 1,2,… is 
sampled at every 14th day (T = 14). To investigate the closed-loop 
performance of the RL-agent, we tested the RL-based controller for 
various sampling periods. As shown in Table 8, for different values of T, 
the RL-based controller is able to bring down the number of severely 
infected to 675 ± 22 cases by the 100th day. From Tables 7 and 8 and 
Figs. 10 and 11 it is clear that the proposed Q-learning-based controller 
showcase acceptable closed-loop performance. Hence, Q-learning algo-
rithm is useful in deriving suitable control policies to curtail disease 
transmission of COVID-19. Moreover, similar to the action set of 
Q-learning framework, the control actions (e.g. lockdown) pertaining to 
COVID-19 are implemented in intermittently, i.e. step-wise restriction 
implementation and lifting. However, deep Q-learning or double deep 
Q-learning algorithms which involve neural network-based Q-functions 
rather than Q-table can be used to account for a more complex objective 
function that penalizes the variations in the control inputs along with 
other constraints in intervention and hospitalization. Moreover, the 
overestimation bias related to the Q-learning algorithm due to boot-
strapping (estimate-based learning) is tackled in double deep Q-learning 
algorithm by implementing two independent Q-value estimators. 

Case 2: In this case, the COVID-19 disease transmission data of Qatar 
is used to conduct various scenario analysis. Comparatively, the popu-
lation in Qatar (2.88× 106) is far less than that of Case 1 (6.7× 107). 

Fig. 7. Control inputs. Case 1, Is0 > H,with initial conditions  
x(0) = [50,597,143, 2, 328,863, 537,252,5, 415,175, 6,438,046, 258, 762, 59,694,554,909, 564,627, 245,911]T. 

Table 7 
Closed-loop performance, Case 1. Time Tc represents the time at which Iam(t), Im(t), Ias(t) and Is(t) becomes ≤ 100 for the first time.  

Intervention Time Tc, I(Tc) ≤ 100  Total infected N0 − S(Tc) Peak Is(t) Time (Is(t) > H)  Death (Direct + indirect) 

No intervention 434,546, 378,480 5.97× 107  1.1× 106  238 Days (98th–336th) 1.71 × 106 (1.55× 106 + 1.58× 105)  
With RL, Is0 > H  196,280, 154,238 4.74× 107  1.2× 106  110 Days (98th–208th) 1.36 × 106 (1.2× 106 + 1.3× 105)  
With RL, Is0 < H  110,-, 40,160 5× 105  1.19× 104  0 Days 1.39 × 104 (7723+ 6253)   
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Fig. 8. System states with RL-based control, Case 1. With initial conditions x(0) = [66,685,532, 56,199, 12,634, 107,422, 106,982, 6244, 1403, 11,
935, 10,104, 1783]T. With Is(t) = 11,935, this scenario represents a case when Is0 < H. 

Fig. 9. Control inputs, Case 1, when Is0 < H.  
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Fig. 12 shows the number of infected cases reported per day in Qatar 
from 29th February to 22nd October. The first case (I0 = 1) is that of a 
36-year-old male who traveled to Qatar during the repatriation of Qatari 
nationals stranded in Iran. Table 5 shows the initial conditions used for 
our simulations and the value of Em0 is set 3 [36]. The majority of the 
population in Qatar are young expatriates and hence the value of R0, 
severity of the disease, and mortality rate associated with COVID-19 in 
Qatar is estimated to be lesser than many other countries [36,40,41]. In 
[41], it is reported that, the case fatality rate in Qatar is 1.4 out of 1000, 
hence μmin = 0.0014 is used for Case 2. Active disease mitigation policies 
of the government and appropriate public health response of a 
well-resourced population has also played a key role in bringing down 
the total number of COVID-19 infections and associated death in Qatar 
[41]. Various restriction and relaxation phases implemented in Qatar 
are marked in Fig. 12 as (1)–(8). As mentioned in Table 9, step by step 
lifting of restrictions started on June 15th. Number of new positive cases 
on June 15th is 1274 (Fig. 12) and number of active cases is 22,119. In 
the month of October, the number of active positive cases oscillated 
between 2764 to 2906. As of October 22nd, the total number of infection 
and death are 130,462 and 228, respectively. Note that, the number of 
severely infected (active acute cases + active ICU cases) is above 100 
cases as of October 22nd (see Table 11). 

The parameter values used for simulating the disease transmission 
dynamics in Qatar are given in Table 6. Compared to the no intervention 
case, the number of infected cases and death with government imposed 
restrictions are significantly less. See Tables 9 and 11 and Figs. 12 and 
13. 

Next, the use of an RL-based controller for the scenarios Is(t) > H and 
Is(t) < H and a case wherein a disturbance due to the import of infected 
cases are analyzed. Similar to Case 1, to train RL-agent, we assign i 
states, i = 1,…,10 for S(t) > 1.2 × 106 and i = 11,…,20 otherwise. See 
Table 10 for the state assignments based on the values of e(kT) and S(t)
used for Case 2. For this case, we iterated for 10,000 scenarios with the 
goal state Gs = s1, which corresponds to the case where e(kT) ∈ [0,100]
and S(t) > 1.2× 106. One of the important concerns pertaining to 
COVID-19 is the possibility of hospital saturation which will lead to 
increased indirect death due to COVID-19. Qatar government responded 
rapidly to the need for increased hospital capacity. Apart from arranging 
37,000 isolation beds and 12,500 quarantine beds, the government has 

Fig. 10. With RL-based control, Case 1.  

Fig. 11. Control inputs for Case 1, Model parameters with nominal, minimum, and maximum values.  

Table 8 
Closed-loop performance for various values of sampling period (T), with initial 
conditions x(0) = [66,685,532, 56,199,

12,634, 107, 422, 106,982, 6244,1403,11,935, 10,104, 1783]T 

.  

Sampling period (T in days)  Number of severely ill on 100th day Is(100)

1 705 
5 660 
8 666 
10 660 
14 704 
20 659  
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set up 3000 acute care beds and 700 intensive care beds [38,43]. Hence, 
the hospital saturation capacity H which is related to severely sick is set 
to 3500 in (25) while training the RL-agent. The action set ak ∈ 𝒜, 
(𝒜j)j∈J+ , and the cost assignments cak for assessing the reward (27) is 
given in Table 3. Fig. 14 shows the convergence of the Q-table for Case 2. 

Note that, with appropriate public health response and relatively 

young expat population with lower risk of severe COVID-19 illness, 
Qatar never had severely infected cases above H. However, as shown in 
Fig. 13, the scenario Is(t) ≥ H is valid with no intervention. The initial 
condition for the case Is0 > H is set be x(0) = [2,676,451, 1741, 2206,
5518,176,817, 1460, 1616,6323,8466,455]T. Figs. 15 and 16 show 
the simulation plots of system states and control input for Is0 =

6323 > H. The RL-based controller derives control input to bring down 
the cases within the range [0,100] in 117 days of intervention, whereas 
without intervention it took 179 days for the same. As shown in 
Table 11, both the direct and indirect death due to COVID-19 is reduced 
to 777 and 288 when compared to 5263 and 342 in the case of no 
intervention. Moreover, when Is(t) stays above H for 115 days in the case 
of no intervention, it is reduced to 36 days in the case with an RL-based 
controller. 

Figs. 17 and 18 show the closed-loop performance of the controller 
with initial conditions x(0) = [2,810,387, 1000, 4991, 19,965,
26,750, 350, 1493, 240, 6687, 40]T. This set of initial conditions is 
from the COVID-19 data of Qatar on June 1st and it corresponds to the 
scenario Is0 < H with Is0 = 240. As shown in Fig. 17, by 600 days from 
June 1st, direct and indirect deaths are 202 and 0, respectively. As given 
in Table 11, on October 22nd, the total number of infected and deaths 
with government intervention is 1.30 × 105 and 228 and with RL-based 
control is 1.01 × 105 and 121. Note that October 22nd corresponds to 
144th day in Fig. 17. With RL-based control, the number of susceptibles 
is more than 2.72 × 106 (> 94%) throughout. Since, a very low per-
centage of the total population is infected, the likelihood of seeing sec-
ondary waves when control is lifted is very high. It can be seen from 
Figs. 17 and 18 that whenever control input goes to zero slight increase 
in the number of infected is resulted and hence the control is increased to 
keep the active number of infected near 100. Note that as of October 
22nd, the active number of cases with government intervention is 2484 
(mild) and 422 (severe). 

Next, we simulate a scenario with disturbance. Social gatherings and 
other behavioral strategies that are not in compliance with the COVID- 
19 mitigation protocols can considerably increase the transmission rate 
β(t). The import of infected cases through international airports can also 
increase the infection rate in society. Such changes can be modeled as a 
disturbance that contributes to a sudden change in the value of β(t). 
Qatar is a country with considerable international traffic and on average 
the Doha airport was handling 100,000 passengers per day before the 
pandemic [44]. However, due to COVID-19 restrictions only around 

Fig. 12. Number of infected per day with intervention decisions by Qatar government. Data from 29th February to 22nd October is shown.  

Table 9 
Time line of various interventions and relaxation implemented in Qatar. HC: 
health care.  

SN Date Intervention 

(1) 

March 9th 
Passengers from 14 countries banned. Only, entry of 
passengers with Qatar residence permit allowed subject to 
COVID-19 protocols. 

March 10th Schools and colleges closed. 

March 13th 
Theatres, wedding gatherings, children play area, gyms 
suspended. 

March 14th 
Travel ban added for 3 more countries taking total to 17 
countries. 

March 15th All public transportation closed.  

(2) 

March 17th All commercial complexes, shopping centers except 
pharmacy and food outlets closed for 14 days. 

March 18th All incoming flights suspended. 

March 22nd 
Physical presence of employees limited to 20% employees 
and remote operation for rest of employees in government 
offices. 

March 27th Distance learning started.  

(3) April 2nd 
Employers directed to allow physical presence of 20% 
employees and remote operation of 80% employees. 

(4) June 15th 
Phase 1: Allowed limited opening (mosque, park, outdoor 
sports, shops, malls), essential flying out of Qatar, 40% 
capacity at private HC facility. 

(5) July 1st 
Phase 2: Allowed gathering of <= 5 people, 60% capacity at 
private HC facility, restricted capacity and hours at leisure 
and business areas, and 50% employees at workplace.  

(6) July 28th 

Phase 3: Allowed gathering of <= 10 people in door and <=

30 outdoor, 50% capacity at leisure and business areas, and 
80% employees at workplace. From 1st of August, Qatar 
permitted exceptional entry of residence stuck abroad.  

(7) September 1st 
Phase 4 (Part 1): Allowed all gathering with precautions, 
expanded inbound flights, metro, bus, 100% capacity at 
private HC. 

(8) September 
15th 

Phase 4 (Part 2): Allowed 80% employees at workspace and 
30% capacity at restaurants and food courts.  
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20% of the regular traffic is expected to arrive in Qatar. Out of these 
passengers a small percentage can be infected despite the strict 
screening strategies including the testing and quarantining protocols 
followed currently. Hence, a per day import of 5 infected cases (ρ = 5) is 
used for the nominal model for Case 2. However, completely lifting 
travel restrictions can increase the number of imported infected cases. 

Fig. 19 shows the performance of the RL-based closed-loop controller 
when a disturbance in the form of an increase in ρ is introduced to the 

system. For this scenario, the initial condition x(0) = [2,749, 893, 500,
1000, 1484, 101,860,200,384,38, 25,466, 228]T and R0 = 1.68 is 
used [41]. This initial condition corresponds to the COVID-19 infection 
data in Qatar on October 22nd. Starting from October 22nd, a distur-
bance of ρ = 500 (days− 1) is applied on the 150th day and maintained 

Fig. 13. System states without intervention for Case 2.  

Table 10 
State assignment based on e(t) and S(t), (𝒮i)i∈I+ , where I+≜{1,2,…,q}, q = 20.  

Case 2 

S(t) > 1.2× 106  S(t) <= 1.2× 106  

ith state (sk) in 𝒮i  e(kT) ith state (sk) in 𝒮i  e(kT)

1  [0, 100] 11  [40,000, ∞]  
2  (100, 200] 12  (30,000, 40,000] 
3  (200, 500] 13  (20,000, 30,000] 
4  (500, 1000] 14  (10,000, 20,000] 
5  (1000, 5000] 15  (5000, 10,000] 
6  (5000, 10,000] 16  (1000, 5000] 
7  (10,000, 20,000] 17  (500, 1000] 
8  (20,000, 30,000] 18  (200, 500] 
9  (30,000, 40,000] 19  (100, 200] 
10  (40,000, ∞]  20  (0, 100]  

Fig. 14. Convergence of Q-table for Case 2. Iterated for 10,000 episodes.  
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Fig. 15. System states, Case 2. Is0 > H, x(0) = [2, 676,451, 1741, 2206, 5518, 176,817, 1460, 1616, 6323, 8466, 455]T.  

Fig. 16. Control input, Case 2. Is0 > H, x(0) = [2, 676,451, 1741, 2206, 5518, 176,817, 1460, 1616, 6323, 8466, 455]T.  
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for 4 weeks. This disturbance model a scenario wherein 500 infected 
cases are imported per day due to relaxing all restrictions on interna-
tional travel. It can be seen from Fig. 19 that the control input is 
increased during the time of disturbance to limit the total number of 
infected and death to 211,053 and 352, respectively. Also, note that the 
import of a lesser number (< 100) of infected cases does not significantly 
influence the dynamics of the COVID-19 in the society. The results of this 
simulation study imply that it is imperative to limit the number of im-
ported cases per day below 100 per day by implementing testing and 
screening strategies as it is done currently until the number of cases is 
reduced worldwide or a protective vaccine is available. 

In general, simulation results for Case 1 and Case 2 show that even 
though the relaxation of control measures can be started when the peak 
declines, complete relaxation is advised only if the number of active 
cases falls below 100 and a significant proportion of the total population 
is infected (Fig. 7). If the total number of active cases is above 100 and/ 
or the number of susceptibles is significantly high, it is recommended to 
exercise 50% control on overall interactions of the infected (detected 
and undetected) which includes maintaining social distancing, 

sanitizing contaminated surfaces, and isolating detected cases. Interna-
tional travel can be allowed by following COVID-19 protocols and 
continuing screening and testing of the passengers to keep the number of 
imported cases to a minimum. 

4. Conclusions and future work 

In this paper, we have demonstrated the use of an RL-based learning 
framework for the closed-loop control of an epidemiological system, 
given a set of infectious disease characteristics in a society with certain 
socio-economic and healthcare characteristics and constraints. Simula-
tion results show that the RL-based controller can achieve the desired 
goal state with acceptable performance in case of disturbances. Incor-
porating real-time regression models to update the parameters of the 
simulation model to match the real-time disease transmission dynamics 
can be a useful extension of this work. 

Table 11 
Closed-loop performance, Case 2. Time Tc represents the time at which Iam(t), Im(t), Ias(t), and Is(t) becomes ≤ 100 for the first time.  

Intervention Time Tc, I(Tc) ≤ 100  Total infected N0 − S(Tc) Peak Is(t) Time (Is(t) > H)  Death (Direct + indirect) 

Government intervention -,-,-,- 1.30× 105  2190 0 Days 228 (228 + 0) 

No intervention 259,329, 217,301 2.36× 106  2.75× 104  115 Days (105th–220th) 5605 (5263 + 342) 

With RL, Is0 > H  211,-,141,237, 3.41× 105  6323 36 Days 1065 (777 + 288) 

With RL, Is0 < H  169, − 134,211,197  1.01× 105  1174 0 Days 121 (121 + 0)  

Fig. 17. System states, Case 2. Is0 < H, x(0) = [2, 810,387, 1000, 4991, 19, 965, 26,750, 350, 1493, 240, 6687, 40]T.  
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